
Multimodal Markup Document Models for Graphic Design Completion

Kotaro Kikuchi1 Naoto Inoue1 Mayu Otani1

1CyberAgent

Edgar Simo-Serra2

2Waseda University

kikuchi kotaro xa@cyberagent.co.jp

Kota Yamaguchi1

������
��

����������
����	���������

������� �)('&%'�"�*� $('&�

C??1@->?;3.8=>;53:A646B320<?/289@=7,

IF���

N�K�

I�������������	���
���

U\V][^ZYWV�^WTQ\X�YZR\^PO]

slb�|yvqultfp
||smjym|iwumgirvdq~tc

c|fo
||{{xa}}`h
{{s_mjymp
||sdvr�j|�kjit z
{{f|_o
||smjym|fo

||s_mjymo
{{e
s_lb�n

�����
������

��������������

¥¥¥¥£¢�¥���¥¢£¥¢ �¥� ¡¡��¤
¥¥¥¥�¢������¢�

ª����
���

¸·WO´P�±ZO] ¸·WO´P�[^W´PÂ[Ä\WV�TPXTPÄPO]W][ZO

Figure 1. We present a multimodal markup document model (MarkupDM) for graphic design documents. Our model can generate

alternative designs by inferring target spans, such as attribute values, images, and texts, from the surrounding context.

Abstract

This paper presents multimodal markup document mod-

els (MarkupDM) that can generate both markup language

and images within interleaved multimodal documents. Un-

like existing vision-and-language multimodal models, our

MarkupDM tackles unique challenges critical to graphic

design tasks: generating partial images that contribute to

the overall appearance, often involving transparency and

varying sizes, and understanding the syntax and seman-

tics of markup languages, which play a fundamental role

as a representational format of graphic designs. To address

these challenges, we design an image quantizer to tokenize

images of diverse sizes with transparency and modify a code

language model to process markup languages and incor-

porate image modalities. We provide in-depth evaluations

of our approach on three graphic design completion tasks:

generating missing attribute values, images, and texts in

graphic design templates. Results corroborate the effective-

ness of our MarkupDM for graphic design tasks. We also

discuss the strengths and weaknesses in detail, providing

insights for future research on multimodal document gener-

ation.1

1Project page: https://cyberagentailab.github.io/

MarkupDM/

1. Introduction

Graphic design is a visual medium that communicates

information and ideas by effectively organizing text, im-

ages, and other elements. While graphic design appears ev-

erywhere in various applications, such as websites, adver-

tisements, and printed materials, creating high-quality de-

signs requires expertise and time. Several studies apply ma-

chine learning techniques to automate design tasks, such as

layout generation [8–10,19,26,27,32], colorization [14,22,

23], or typography stylization [29,38]. Apart from the elab-

oration of individual tasks, there have been holistic mod-

eling of graphic design to solve multiple tasks [11, 35].

While these approaches capture implicit and complex re-

lationships among elements and their attributes, they suf-

fer from limited training samples and have not yet achieved

production-level performance. Recent studies show promis-

ing performance improvement for layout generation by

utilizing the prior knowledge of Large Language Models

(LLMs) [19, 26, 32]. The successful use of LLMs for a

design task inspires our approach to using multimodal lan-

guage models for graphic design.

In this paper, we investigate multimodal LLMs for holis-

tic modeling of graphic design. We treat graphic design as

an interleaved multimodal document consisting of markup

language and images. This representation allows us to di-

rectly apply multimodal LLMs, which has shown promis-

1

https://cyberagentailab.github.io/MarkupDM/
https://cyberagentailab.github.io/MarkupDM/

ing results in vision-and-language tasks [36], to the graphic

design domain. We adopt the code LLM, which learned

markup languages like HTML, as the base model to pro-

mote better knowledge transfer in structural expressions.

One obstacle to practically applying multimodal LLMs is

that while handling opaque and fixed-size images is com-

mon in the vision community, graphic design often involves

images of different sizes with transparency, which makes

it challenging to employ off-the-shelf image generators and

quantizers. We address this problem by tailoring an image

quantizer for graphic design.

We build our model, named the markup document model

(MarkupDM), through two-stage training; first, we train

an image quantizer that encodes transparent and different-

sized images into discrete tokens, and then we extend a

pre-trained code LLM to input and output image tokens.

We train the MarkupDM on 166K graphic design templates

based on the next token prediction. We transform the in-

put sequence into the prefix-suffix-middle format so that the

model can generate the missing middle part from the given

prefix and suffix [1, 2].

We evaluate our MarkupDM on three graphic de-

sign completion tasks: generating missing attribute val-

ues, images, and texts in graphic design templates. Our

MarkupDM can generate plausible designs consistent with

the given context, allowing us to explore various design

alternatives as shown in Fig. 1. We further discuss the

strengths and weaknesses of our MarkupDM in detail and

provide insights for future research on multimodal design

generation.

In summary, our contributions are as follows:

• We propose a multimodal markup language model, a

new class of multimodal LLM that considers graphic

designs interleaved multimodal documents.

• To adapt LLMs into the graphic design application, we

build an image quantizer that encodes images of dif-

ferent sizes with transparency into discrete tokens.

• We empirically show our MarkupDM can effectively

solve graphic design completion tasks.

2. Related Work

2.1. Graphic Design Generation and Completion

There has been an ongoing research effort in computa-

tional support for graphic design, such as layout genera-

tion [8–10, 18, 19, 26, 27, 32, 34], colorization [14, 22, 23],

typography stylization [29, 38], or general stylization [28].

Several previous works, like ours, infer missing parts or al-

ternative solutions from the surrounding context. Complet-

ing a layout from a given partial layout is one of the com-

mon subtasks in layout generation [10]. Zhao et al. [38]

propose a model that predicts typographic styles in web de-

sign from visual and semantic contexts. Recently, Shao et

al. [28] have presented a generative model for web page

styling. Qiu et al. [23] propose a model based on the

masked prediction on multi-palette color representation for

recoloring graphic design documents.

Some studies aim to model the entire graphic design doc-

ument. CanvasVAE [35] is a variational autoencoder that

generates heterogeneous attributes such as type, position,

size, and image content for each element in a graphic design

document. FlexDM [11] adopts the masked prediction ap-

proach to efficiently capture relationships among elements

and their attributes. Both models estimate the features of

images and texts and then retrieve the most similar ones

from the dataset. There is also active research into other

approaches, such as generating stylized text that is placed

on top of generated raster images [12, 13, 34], to generate

high-quality overall designs.

A few works have started to apply large language mod-

els (LLMs) for graphic design tasks [18, 19, 26, 32]. Lin et

al. [18] translate a text description of the desired layout

into an intermediate text representation using LLM to guide

the subsequent layout generation. LayoutNUWA [32] treat

layout generation as a code generation task and utilize

knowledge of LLMs to generate layout code. Concurrently,

Cheng et al. [3] propose a multimodal LLM that generates

attributes such as position and size for each element given

as RGBA images.

Inspired by these studies, we propose a new approach

for the holistic modeling of graphic design documents that

leverages prior knowledge of multimodal LLM. In this con-

text, our work can be seen as the first attempt to obtain im-

age and text content by generation rather than by retrieval.

2.2. Multimodal Large Language Models

The recent success of LLMs has led to the development

of multimodal LLMs that can recognize and generate im-

ages [36]. Several multimodal LLMs, such as GILL [15],

Emu [30], and DreamLLM [5], are designed to connect

LLMs with a off-the-shelf pre-trained image encoder, such

as CLIP [24], and a decoder such as Stable Diffusion [25].

These pre-trained image encoders and decoders are chal-

lenging for graphic design completion tasks as they do not

support transparent images. Training these encoders and

decoders requires a large-scale dataset of image-text pairs.

However, collecting such a dataset is challenging as images

in graphic design documents are difficult to describe accu-

rately with text.

Another approach of multimodal LLMs is representing

images as discrete tokens [1, 4, 33]. This approach en-

codes images into a sequence of tokens via a pre-trained im-

age quantizer, such as VQGAN [6]. Although the publicly

available pre-trained quantizers often do not support images

2

��������

��
�	�

 � ��

�� ���� ��

�� �� �

�� ��� �

'%�$&"���#
��%�&$"����

-,+�����

 � ��

�� ���� ��

�� �� �

�� ��� �

��
�	�

754320/.6511

Figure 2. Our image quantizer is trained by reconstructing images

resized to a fixed size. When decoding, the image size is given in

addition to the image tokens.

with transparency, they only require images for training, not

image-text pairs. We adopt this approach and tailor an im-

age quantizer for graphic design.

3. Method

We first train an image quantizer to encode images into

discrete tokens. We then build the MarkupDM by fine-

tuning a pre-trained code LLM with interleaved multimodal

documents to incorporate the image modality. We illustrate

the overview of our method in Fig. 2 and Fig. 3.

3.1. Image Quantizer

We train an image autoencoder that encodes images of

different-sized images with transparency into discrete to-

ken maps with 1/f resolution and decodes them back to the

original images. In preliminary experiments, we found that

varying the token size according to the image size makes it

challenging to train the markup language model in the later

stage. Instead, we take a simple but effective approach of

resizing the input image to a fixed square size. We follow

the previous studies [6, 25] and take the same network ar-

chitecture and training objectives for our autoencoder, with

the only difference related to the alpha channel. We set the

number of input/output channels to four and consider L1

reconstruction loss for all channels. When calculating the

loss based on RGB-based external models, e.g., the percep-

tual loss [37], we convert generated RGBA images to RGB

images by alpha compositing on a white background. We

initialize our model with the weights of a pre-trained RGB

image quantizer. For the alpha channel weights, we use the

mean values of the corresponding RGB weights.

3.2. Document Representation

Once we train the image quantizer, we apply the quan-

tizer and convert graphic design templates into unified se-

quence representations. Our data representation is based on

�����������	���������
��������
����
�

�
��
�	�
����

$#"!
$#"��

$!�� $!��

;68-.705461/,
;+0*-(.)3('1:
92& %2&

�
��
�	�
����

A@>?<

A@>=<

:.71:[P:.W1/U
QNMXNRJKINZJH\GEV]/U

/QDCBFT

i	��d
�	�
����

9 9j l% %% nmPl 2&

jo %j99 l Pl jnj n9

$#"!
$#"��

$!�� $!��

;68-.705461/,
;+0*-(.)3('1:
92& %2&

�
��
t
��

A@>?<

A@>=<

:.71:[P:.W1/U
QNMXNRJKINZJH\GEV]/U

/QDCBFT

�
��
t
��

i	��d
t
��

9 9j l% %% nmPl 2&

jo %j99 l Pl jnj n9

Figure 3. Our model is based on causal multimodal LLM, with

separate embedding layers and prediction heads dedicated to im-

ages and text tokens.

the SVG format2 with the difference that we embed discrete

tokens obtained by quantizing the image instead of the path

to the image file. We show an example of the markup doc-

ument representation in the following:

Multimodal markup document

[bos]

<svg xmlns="http://www.w3.org/2000/svg" viewBo

x="0 0 4 19 298" width="419" height="298">

<image href="[boi]360[sep]260[sep][img:1][im

g:42][img:3][img:94]...[eoi]" x="-9" y="-9"

width="436" height="315"/>

<text font-family="Montserrat" font-size="30

" font-weight="bold" fill="rgba(255, 255, 25

5, 1)" x="32" y="81">FAMILY</text>

...

</svg>

[eos]

The image content, i.e., the value of href attribute in

the <image> tag, starts with the special token [boi] and

ends with [eoi]. The inside of these is separated by the

special token [sep], and each represents the width, height,

and image tokens obtained by our image quantizer. This

image representation is similar to the previous work on a

multimodal LLM for simplified HTML documents [1], but

differs in that the image size is also described as text and

included in the target of generation.

3.3. Multimodal Markup Language Model

We build MarkupDM based on the recent code LLMs,

which are specifically tuned for handling coding tasks. We

make two extensions to the base code LLM to incorporate

the image representation described in Sec. 3.2. First, we

extend the vocabulary of the base LLM to include the addi-

tional special tokens, such as [boi]. Second, we add new

modules dedicated to the image tokens, such as [img:1],

the embedding module, and the prediction head. In the em-

bedding module, we first embed the image tokens via the

frozen lookup table in our image decoder. We then concate-

2https://www.w3.org/TR/SVG11/

3

https://www.w3.org/TR/SVG11/

nate them with the positional encodings [31] and project

them to the same dimension as the text embeddings. The

prediction head for image tokens is similar to text tokens,

but uses a different set of parameters and vocabulary, i.e.,

the codebook size in image quantization.

We train our model based on the next token prediction in

our sequences to which we randomly apply the fill-in-the-

middle transformation [1, 2], allowing the model to predict

the missing middle part from the prefix and suffix parts. Our

model has to know the next token’s modality for inference

due to the different prediction heads. We determine the next

modality on a rule based on the tokens generated so far.

4. Experiments

We first evaluate our image quantizer on the image re-

construction task and then our multimodal markup language

models on several graphic design completion tasks.

4.1. Image Quantization

4.1.1 Setup

We use an internal dataset on graphic design templates, sim-

ilar to the Crello dataset [35]. The design template consists

of an ordered set of elements, each associated with an el-

ement category, geometric attributes, and design attributes.

The template also has global attributes such as canvas size.

We use 800,000 RGBA images of non-textual elements in

the design templates for training and 133,267 images from

the other templates for evaluation.

We use the RGB image quantizer from Latent Diffusion

Model [25] trained on the OpenImages dataset [16], which

is mainly composed of photographs, as a baseline. Specif-

ically, we use the quantizer with the scaling factor f = 16

and the codebook size Z = 16, 384 based on the balance

between the reconstruction quality and the resulting token

length. We finetune the quantizer for 100,000 steps on our

dataset using the techniques explained in Sec. 3.1 to adapt

it to RGBA images. For further analysis, we finetune the

quantizer solely using RGB images without special tech-

niques, which we denote by Ours-RGB. We apply an off-

the-shelf background removal tool to convert RGB images

to RGBA images for comparison. We use Rembg [7] with

the IS-Net model [21] for this purpose.

We evaluate the quantizers using the mean squared er-

ror (MSE) for RGB and alpha channels and the reconstruc-

tion Fréchet Inception Distance (rFID) for RGB images,

which computes the distance between the feature distribu-

tions of the original and reconstructed images. We convert

the RGBA images generated by our quantizer to RGB im-

ages by alpha compositing on a white background for RGB-

based metrics.

Table 1. Quantitative comparison of image reconstruction using

each quantizer. The lower the better for all metrics. The dagger †

indicates the score when the alpha value for all pixels is set to 1.0.

MSE rFID

RGB (×10-3) Alpha (×10-1) RGB

Baseline [25] 2.42 3.75† 6.34

Ours-RGB 1.50 3.75† 1.65

Ours 1.86 0.03 4.96

Table 2. Quantitative comparison of infilling performance. The

scores indicate accuracy, and the higher, the better. The Font rep-

resents the font family, and the F-Size represents the font size.

FlexDM is formulated differently from ours, and the scores are

not directly comparable and are only shown for reference.

X Y Width Height Font F-Size

FlexDM [11] 0.480 0.278 0.507 0.639 0.785 0.870

MarkupDM

SC1-1B 0.541 0.379 0.827 0.895 0.769 0.673

SC1-3B 0.587 0.444 0.865 0.936 0.807 0.728

SC1-7B 0.621 0.472 0.873 0.947 0.813 0.707

SC2-3B 0.522 0.355 0.764 0.801 0.771 0.681

SC2-7B 0.548 0.380 0.773 0.800 0.780 0.705

4.1.2 Image Reconstruction

We show the quantitative comparison of image reconstruc-

tion using each quantizer in Tab. 1. Both of our quantiz-

ers outperform the baseline in terms of RGB-based metrics

thanks to fine-tuning images from the same domain. We

show qualitative results in Fig. 4. We can see that RGB-

based reconstruction with general background removal does

not work well, as it removes foreground objects either ex-

cessively or insufficiently. In contrast, our quantizer suc-

cessfully reconstructs RGBA images thanks to the alpha in-

formation embedded in the discrete tokens.

4.2. Graphic Design Completion

4.2.1 Setup

We use the same dataset as the image reconstruction task

and convert 165,991 graphic design templates to SVG for-

mat to train the models. In the conversion, we represent text

elements by <text> tags, and other elements by <image>

tags. We do not specify attributes if they have the default

values. Also, since SVG cannot render multi-line text in

a single element, we split a text element into multiple ele-

ments when a new line appears.

We train our MarkupDM with the fill-in-the-middle

(FIM) objective [1, 2] to predict the middle part of the

sequence from the prefix and suffix parts. Considering

4

RGB images RGBA images

Baseline [25] Ours-RGB Ours-RGB + Rembg [7] Ours Original

Figure 4. Image reconstruction results.

0 2000 4000 6000 8000

Suffix Size

0

1

2

3

4

F
re
q
u
en
cy

×104

0.0

0.2

0.4

0.6

0.8

A
cc
u
ra
cy

SC1-7B

SC2-7B

Figure 5. Mean accuracy of the infilled attribute values versus

suffix length. The gray histogram shows the frequency distribution

of suffix lengths.

the span we want to fill-in as the middle part, our model

can infer the span from the preceding and following con-

text. We validate the effectiveness of our method with

three tasks: attribute value completion represented like

<text x="[MASK]" ...> where [MASK] represents the

target span to be filled, image completion represented like

<image href="[MASK]" .../>, and text completion

represented like <text ...>[MASK]</text>. We select

six attribute types, x, y, width, height, font-family,

and font-size for the attribute value completion task.

Note that we do not train MarkupDM with task-specific su-

pervision, such as task-specific FIM patterns, and tasks are

post-hoc for evaluation purposes.

We evaluate MarkupDM using 13,188 to 24,872 tar-

get spans obtained from 2,000 unseen templates, select-

ing the corresponding spans for each task. We select Star-

Coder [17] (SC1) and StarCoder2 [20] (SC2) as the base

LLMs for our MarkupDM for their strong performance on

code comprehension and generation tasks. We are unaware

of literature having the same experimental setting as ours,

but for reference, we report the performance of the most

5

Figure 6. Image completion results. Each triplet shows the input, the predicted completion, and the original design from left to right or top

to bottom. The [MASK] or [M] indicates the missing part to be completed.

similar method, FlexDM [11]. We train the FlexDM model

on our dataset using random masking patterns and adjust it

as comparable as possible. We also compare MarkupDM

with the base LLMs in different model sizes. For attribute

value completion, we report the mean accuracy for each at-

tribute type. We parse attributes from the text generated by

MarkupDM and evaluate the accuracy using the quantized

representation used in FlexDM.

4.2.2 Attribute Value Completion

We show the quantitative results on the attribute accuracy

in Tab. 2. Note that the scores between FlexDM and

MarkupDM are not fully comparable due to the different

formulations and available contexts, i.e., MarkupDM can

predict element size using the image size, while FlexDM

can not. MarkupDM performs reasonably well compared

to FlexDM, showing that they are successfully trained to

fill the graphic design templates. Among the MarkupDM,

SC1-7B, the largest base LLM, yields the best performance

6

Figure 7. Text completion results shown similarly to Fig. 6. The green arrows point to the missing text, and the green boxes indicate the

zoomed-in areas.

in most attributes, as expected. Using SC2, the successor

of SC1, shows worse performance. SC2 adopts the slid-

ing window attention (SWA) to reduce computational cost.

We suspect that SWA may not be suitable for FIM style in-

filling, as the model can not know the valid contexts if the

length of the suffix tokens is longer than the window size.

Figure 5 shows the mean accuracy for each bin of the suffix

length. The performance of SC2 indeed degrades signifi-

cantly when the suffix length is longer than the window size

(4, 096 tokens).

4.2.3 Image and Text Completion

We perform image and text completion tasks using the best

MarkupDM, SC1-7B. We show the qualitative results in

Fig. 6 for successful image completion, Fig. 7 for successful

text completion, and Fig. 8 for failure cases for both tasks.

We observe cases where the model generates plausible

images by copying other images in the template, using rep-

etition patterns and symmetry as hints, e.g., the top two ex-

amples in Fig. 6. Our model also succeeds in generating

typical decorations such as buttons and underlays, e.g., the

two examples in the lower left. Our model is also good at

generating background images that harmonize foreground

objects, e.g., the bottom right example.

For text completion, our model can generate text that

connects with the preceding or following lines in a gram-

matically correct way in many cases, e.g., the top left exam-

ple in Fig. 7. Besides multiple lines, there are cases where

the model generates text that matches the surrounding texts,

e.g., the right example. The bottom left example does not

have a strong textual context. Still, our MarkupDM success-

fully generates text with a typical role, using the position of

the target element and the visual decoration as hints.

In the failure cases, MarkupDM has difficulty generat-

ing images of main objects due to the lack of context and

poor image generation ability, e.g., the top left example in

Fig. 8. It also fails to generate images that require delicate

visual harmonization with other elements, e.g., the middle

left example. For text completion, we can see failures due to

errors in image understanding, e.g., “business school back-

7

Figure 8. Failure cases shown similarly to Figs. 6 and 7.

pack” is generated for the earbuds in the right example. It

is not yet possible to generate text by adjusting its length so

that it does not conflict with other visual decorations, e.g.,

the bottom left example.

5. Limitations and Discussion

We introduce MarkupDM, a new class of multimodal

LLMs that can generate markup languages with transparent

and different-sized images. We investigated MarkupDM’s

performance in detail using three completion tasks, but it

remains unclear whether our model can predict all aspects

of an element, including its type, attributes, and content. We

also have not verified whether our model can generate the

rest of the template when the first part is given. The pri-

mary limitation of MarkupDM is its poor ability to generate

main images. Increasing the number of training images us-

ing other multimodal datasets may help improve the image

generation quality. Alternatively, we could consider leaving

the main image generation to an external strong image gen-

erator or adapting a strong RGB-based multimodal LLM to

RGBA images. As extensions to MarkupDM, we are in-

terested in settings that provide additional context via text

prompts [12, 13] and incorporate reference designs via re-

trieval augmentation [8]. Finally, designing interfaces for

multimodal LLMs, such as our MarkupDM, to support cre-

ative design workflows is another important direction that

remains to be explored.

8

References

[1] Armen Aghajanyan, Bernie Huang, Candace Ross, Vladimir

Karpukhin, Hu Xu, Naman Goyal, Dmytro Okhonko, Man-

dar Joshi, Gargi Ghosh, Mike Lewis, and Luke Zettlemoyer.

CM3: A Causal Masked Multimodal Model of the Internet.

arXiv preprint arXiv:2201.07520, 2022. 2, 3, 4

[2] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John

Schulman, Christine McLeavey, Jerry Tworek, and Mark

Chen. Efficient Training of Language Models to Fill in the

Middle. arXiv preprint arXiv:2207.14255, 2022. 2, 4, 11

[3] Yutao Cheng, Zhao Zhang, Maoke Yang, Hui Nie, Chunyuan

Li, Xinglong Wu, and Jie Shao. Graphic design with large

multimodal model. arXiv preprint arXiv:2404.14368, 2024.

2

[4] Ethan Chern, Jiadi Su, Yan Ma, and Pengfei Liu. Anole:

An open, autoregressive, native large multimodal mod-

els for interleaved image-text generation. arXiv preprint

arXiv:2407.06135, 2024. 2

[5] Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng

Ge, Jinrong Yang, Liang Zhao, Jianjian Sun, Hongyu Zhou,

Haoran Wei, Xiangwen Kong, Xiangyu Zhang, Kaisheng

Ma, and Li Yi. DreamLLM: Synergistic multimodal com-

prehension and creation. In ICLR, 2024. 2

[6] Patrick Esser, Robin Rombach, and Bjorn Ommer. Tam-

ing Transformers for High-Resolution Image Synthesis. In

CVPR, 2021. 2, 3

[7] Daniel Gatis. Rembg. https://github.com/

danielgatis/rembg, 2020. (accessed 2024-08-27). 4,

5, 12

[8] Daichi Horita, Naoto Inoue, Kotaro Kikuchi, Kota Yam-

aguchi, and Kiyoharu Aizawa. Retrieval-Augmented Lay-

out Transformer for Content-Aware Layout Generation. In

CVPR, 2024. 1, 2, 8

[9] Mude Hui, Zhizheng Zhang, Xiaoyi Zhang, Wenxuan Xie,

Yuwang Wang, and Yan Lu. Unifying layout generation with

a decoupled diffusion model. In CVPR, 2023. 1, 2

[10] Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu

Otani, and Kota Yamaguchi. LayoutDM: Discrete Diffusion

Model for Controllable Layout Generation. In CVPR, 2023.

1, 2

[11] Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu

Otani, and Kota Yamaguchi. Towards flexible multi-modal

document models. In CVPR, 2023. 1, 2, 4, 6

[12] Naoto Inoue, Kento Masui, Wataru Shimoda, and Kota Ya-

maguchi. OpenCOLE: Towards Reproducible Automatic

Graphic Design Generation. In CVPRW, 2024. 2, 8

[13] Peidong Jia, Chenxuan Li, Yuhui Yuan, Zeyu Liu, Yichao

Shen, Bohan Chen, Xingru Chen, Yinglin Zheng, Dong

Chen, Ji Li, Xiaodong Xie, Shanghang Zhang, and Bain-

ing Guo. Cole: A hierarchical generation framework for

multi-layered and editable graphic design. arXiv preprint

arXiv:2311.16974, 2024. 2, 8

[14] Kotaro Kikuchi, Naoto Inoue, Mayu Otani, Edgar Simo-

Serra, and Kota Yamaguchi. Generative colorization of struc-

tured mobile web pages. In WACV, 2023. 1, 2

[15] Jing Yu Koh, Daniel Fried, and Ruslan Salakhutdinov. Gen-

erating Images with Multimodal Language Models. In

NeurIPS, 2023. 2

[16] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-

jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan

Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig,

and Vittorio Ferrari. The Open Images Dataset V4. IJCV,

128(7), 2020. 4

[17] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muen-

nighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,

Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii

Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier De-

haene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro,

Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel

Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,

Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,

Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry

Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Nour

Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,

Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zh-

danov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer

Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri

Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Car-

olyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contrac-

tor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine

Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas

Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.

StarCoder: May the source be with you! TMLR, 2023. 5

[18] Jiawei Lin, Jiaqi Guo, Shizhao Sun, Weijiang Xu, Ting Liu,

Jian-Guang Lou, and Dongmei Zhang. A parse-then-place

approach for generating graphic layouts from textual de-

scriptions. In ICCV, 2023. 2

[19] Jiawei Lin, Jiaqi Guo, Shizhao Sun, Zijiang James Yang,

Jian-Guang Lou, and Dongmei Zhang. Layoutprompter:

awaken the design ability of large language models. In

NeurIPS, 2023. 1, 2

[20] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-

erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao

Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang

Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes

Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, In-

draneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia

Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii,

Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman

Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati,

Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muh-

tasham Oblokulov, Christopher Akiki, Marc Marone, Cheng-

hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao,

Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu,

Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet,

Jennifer Robinson, Carolyn Jane Anderson, Nicolas Cha-

pados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite,

Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes,

Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm

de Vries. StarCoder 2 and The Stack v2: The Next Genera-

tion. arXiv preprint arXiv:2402.19173, 2024. 5

[21] Xuebin Qin, Hang Dai, Xiaobin Hu, Deng-Ping Fan, Ling

Shao, and Luc Van Gool. Highly Accurate Dichotomous Im-

9

https://github.com/danielgatis/rembg
https://github.com/danielgatis/rembg

age Segmentation. In ECCV, 2022. 4

[22] Qianru Qiu, Xueting Wang, and Mayu Otani. Multimodal

color recommendation in vector graphic documents. In ACM

MM, 2023. 1, 2

[23] Qianru Qiu, Xueting Wang, Mayu Otani, and Yuki Iwazaki.

Color recommendation for vector graphic documents based

on multi-palette representation. In WACV, 2023. 1, 2

[24] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen

Krueger, and Ilya Sutskever. Learning Transferable Visual

Models From Natural Language Supervision. In ICML,

2021. 2

[25] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image syn-

thesis with latent diffusion models. In CVPR, 2022. 2, 3, 4,

5, 12

[26] Jaejung Seol, Seojun Kim, and Jaejun Yoo. PosterLlama:

Bridging design ability of langauge model to contents-aware

layout generation. In ECCV, 2024. 1, 2

[27] Mohammad Amin Shabani, Zhaowen Wang, Difan Liu,

Nanxuan Zhao, Jimei Yang, and Yasutaka Furukawa. Visual

layout composer: Image-vector dual diffusion model for de-

sign layout generation. In CVPR, 2024. 1, 2

[28] Zirui Shao, Feiyu Gao, Hangdi Xing, Zepeng Zhu, Zhi Yu,

Jiajun Bu, Qi Zheng, and Cong Yao. Webrpg: Automatic

web rendering parameters generation for visual presentation.

In ECCV, 2024. 2

[29] Wataru Shimoda, Daichi Haraguchi, Seiichi Uchida, and

Kota Yamaguchi. Towards diverse and consistent typogra-

phy generation. In WACV, 2024. 1, 2

[30] Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong

Zhang, Yueze Wang, Hongcheng Gao, Jingjing Liu, Tiejun

Huang, and Xinlong Wang. Emu: Generative Pretraining in

Multimodality. In ICLR, 2024. 2

[31] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier Fea-

tures Let Networks Learn High Frequency Functions in Low

Dimensional Domains. In NeurIPS, 2020. 4

[32] Zecheng Tang, Chenfei Wu, Juntao Li, and Nan Duan. Lay-

outNUWA: Revealing the hidden layout expertise of large

language models. In ICLR, 2024. 1, 2

[33] Chameleon Team. Chameleon: Mixed-Modal Early-Fusion

Foundation Models. arXiv preprint arXiv:2405.09818, 2024.

2

[34] Haohan Weng, Danqing Huang, Yu Qiao, Zheng Hu, Chin-

Yew Lin, Tong Zhang, and CL Chen. Desigen: A pipeline

for controllable design template generation. In CVPR, 2024.

2

[35] Kota Yamaguchi. CanvasVAE: Learning to generate vector

graphic documents. In ICCV, 2021. 1, 2, 4

[36] Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun,

Tong Xu, and Enhong Chen. A Survey on Multimodal Large

Language Models. arXiv preprint arXiv:2306.13549, 2024.

2

[37] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-

man, and Oliver Wang. The Unreasonable Effectiveness of

Deep Features as a Perceptual Metric. In CVPR, 2018. 3

[38] Nanxuan Zhao, Ying Cao, and Rynson W.H. Lau. Modeling

fonts in context: Font prediction on web designs. Computer

Graphics Forum, 37, 2018. 1, 2

10

A. Implementation Details

We build our RGBA quantizer by finetuning a pre-

trained RGB quantizer, as described in Secs. 3.1 and 4.1.1.

We train our quantizer in 100,000 steps using mixed pre-

cision training using bfloat16 a batch size of 8 with a sin-

gle NVIDIA L4 GPU. We use the Adam optimizer with a

learning rate of 1 × 10
−5. We resize the input images to

256 × 256 pixels. The training takes approximately 2 days

to complete.

We build our MarkupDM by extending a pre-trained

code LLM, as described in Secs. 3.3 and 4.2.1. We train our

model in 100,000 steps with a single A100 80GB GPU with

several techniques for efficient training, including mixed

precision training using bfloat16, gradient checkpointing,

and the Flash Attention 2. We use the Adam optimizer

with a learning rate of 5 × 10
−5 and a constant schedule.

The fill-in-the-middle (FIM) transformation is applied with

a probability of 0.9 during training. Specifically, we use

the context-level FIM with the token-level span selection in

the prefix-suffix-middle format [2]. The training takes ap-

proximately 1 day for SC1-1B version, 2 days for SC1-3B

version, and 4 days for SC1-7B version to complete.

B. Details on Our Experiments and Additional

Results

We convert structured graphic design documents to SVG

format, as described in Secs. 3.2 and 4.2.1. We show in

Tab. 3 the element tags and their corresponding attributes

used in the experiments.

Table 3. Element tags and their corresponding attributes used in

our experiments. Please refer to the SVG specification for details.

Element tag Attribute

svg xmlns, viewBox, width, height

image href, x, y, width, height, transform, opacity

text

x, y, fill, font-family, font-size, font-

weight, font-style, text-anchor, letter-

spacing, transform, opacity

For graphic design completion, we use the top-p sam-

pling with p = 0.9 for generation. We set the maximum

number of new tokens to 10 for attribute value completion,

50 for text completion, and 278 for image completion (256

for the image tokens, 2 for the special tokens, and 20 for the

image width and height).

We provide additional image reconstruction results in

Fig. 9 and design completion results in Figs. 10 and 11 by

MarkupDM (SC1-7B). We set the temperature to 2.0 to gen-

erate more diverse outputs for the font type completion.

11

RGB images RGBA images

Baseline [25] Ours-RGB Ours-RGB + Rembg [7] Ours Original

Figure 9. Additional image reconstruction results. Our quantizer (f=16) can encode RGBA images so that they can be reconstructed with

high fidelity. Reconstructing human faces is still challenging for our quantizer, but it may be alleviated by using finer scaling factors or

additional losses for faces.

12

Figure 10. Additional qualitative results for design completion. The left most designs are the original designs, and the right figures show

the results of attribute value (font type), text, and image completion. The green boxes indicate the original design to be altered.

13

Figure 11. Additional qualitative results for design completion (continued).

14

	. Introduction
	. Related Work
	. Graphic Design Generation and Completion
	. Multimodal Large Language Models

	. Method
	. Image Quantizer
	. Document Representation
	. Multimodal Markup Language Model

	. Experiments
	. Image Quantization
	Setup
	Image Reconstruction

	. Graphic Design Completion
	Setup
	Attribute Value Completion
	Image and Text Completion

	. Limitations and Discussion
	. Implementation Details
	. Details on Our Experiments and Additional Results

