aepo package
Subpackages
Submodules
aepo.cli module
- aepo.cli.aepo()
- Parameters:
--cache_dir – the directory to cache the dataset.
--split – the split of the dataset to use.
--output – the path of the output file.
--num_instructions – the number of instructions.
--num_responses –
the maximum number of responses per instruction in the dataset.
--num_annotations –
the number of annotations available per instruction. To generate a pairwise preference dataset, set to 2.
--similarity_measure – the similarity measure to use for diverse MBR.
--diversity_penalty – the diversity penalty for diverse MBR.
--reward_model – the repository name in Huggingface hub of the reward model. Default is OpenAssistant/reward-model-deberta-v3-large-v2
--west_of_n – use the west-of-n strategy to generate the preference dataset.
--access_token – the read access token for the Huggingface API.
--use_sample_cache – use the cached sample dataset.
--use_matrix_cache – use the cached similarity matrix.
--debug – enable debug mode.
- Returns:
None
The command line interface of AEPO.
aepo.preprocess module
- aepo.preprocess.ds2csv(ds: Dataset, sample_dir: str, num_instructions: int = 4, num_responses: int = 32)
Convert the dataset to CSV files. :param ds: the annotation-efficient dataset. :type ds: datasets.Dataset :param sample_dir: the directory to save the CSV files. :type sample_dir: str :param num_instructions: the number of instructions. :type num_instructions: int :param num_responses: the number of responses per instruction we use for the AEPO. :type num_responses: int
- Returns:
None
- aepo.preprocess.read_dataset(file_path: str, split: str, access_token: str | None = None) Dataset
- Parameters:
file_path (str) – the path or the repository name in Huggingface hub of the input dataset file.
split (str) – the split of the dataset to use.
access_token (str) – the read access token for the Huggingface API.
- Returns:
the annotation-efficient dataset.
- Return type:
datasets.Dataset
Read the dataset from a file or Huggingface Hub.