cenreg package
Subpackages
- cenreg.distribution package
- cenreg.metric package
- cenreg.model package
- cenreg.pytorch package
- Submodules
- cenreg.pytorch.cjd2F module
- cenreg.pytorch.copula_torch module
- cenreg.pytorch.datamodule module
- cenreg.pytorch.distribution module
- cenreg.pytorch.loss_cdf module
- cenreg.pytorch.loss_cjd module
- cenreg.pytorch.loss_cont module
- cenreg.pytorch.mlp module
- cenreg.pytorch.utils module
- Module contents
Submodules
cenreg.utils module
- cenreg.utils.create_bins(max_y: float, min_y: float = 0.0, num_bins=10, algorithm: str = 'even') ndarray
Create bins for discretizing a continuous variable. This function generates evenly spaced bins between min_y and max_y with num_bins-2 intervals, and generates an additional bin at the end to include the value exceeding max_y.
- Parameters:
max_y (float) – Maximum value of y.
min_y (float) – Minimum value of y.
num_bins (int) – Number of bins.
- Returns:
bins – Array of bin edges.
- Return type:
np.ndarray
- cenreg.utils.create_discretized_labels(bins: ndarray, num_risks: int, t: ndarray, e: ndarray) ndarray
Create discretized labels for survival analysis.
- Parameters:
bins (np.ndarray) – Array of bin edges.
num_risks (int) – Number of risks (or categories) to be assigned to each bin.
t (np.ndarray) – Array of time values.
e (np.ndarray) – Array of event indicators (1 for event, 0 for censored).
- Returns:
Array of discretized labels, where each label corresponds to a bin and a risk category.
- Return type:
np.ndarray