Source code for dte_adj.simple

import numpy as np
from dte_adj.stratified import (
    SimpleStratifiedDistributionEstimator,
    AdjustedStratifiedDistributionEstimator,
)


[docs] class SimpleDistributionEstimator(SimpleStratifiedDistributionEstimator): """ A class for computing the empirical distribution function and distributional treatment effects using simple (unadjusted) estimation methods. This estimator computes Distribution Treatment Effects (DTE), Probability Treatment Effects (PTE), and Quantile Treatment Effects (QTE) without using machine learning models for adjustment. It provides a baseline approach suitable when treatment assignment is random or when covariate adjustment is not needed. Example: .. code-block:: python import numpy as np from dte_adj import SimpleDistributionEstimator # Generate sample data X = np.random.randn(1000, 5) D = np.random.binomial(1, 0.5, 1000) # Random treatment Y = X[:, 0] + 2 * D + np.random.randn(1000) # Fit simple estimator estimator = SimpleDistributionEstimator() estimator.fit(X, D, Y) # Compute treatment effects locations = np.linspace(Y.min(), Y.max(), 20) dte, lower, upper = estimator.predict_dte(1, 0, locations) pte, pte_lower, pte_upper = estimator.predict_pte(1, 0, locations) """ def __init__(self): """Initializes the SimpleDistributionEstimator. Returns: SimpleDistributionEstimator: An instance of the estimator. """ super().__init__()
[docs] def fit( self, covariates: np.ndarray, treatment_arms: np.ndarray, outcomes: np.ndarray ) -> "SimpleDistributionEstimator": """ Set parameters. Args: covariates (np.ndarray): Pre-treatment covariates. treatment_arms (np.ndarray): The index of the treatment arm. outcomes (np.ndarray): Scalar-valued observed outcome. Returns: SimpleDistributionEstimator: The fitted estimator. """ if covariates.shape[0] != treatment_arms.shape[0]: raise ValueError("The shape of covariates and treatment_arm should be same") if covariates.shape[0] != outcomes.shape[0]: raise ValueError("The shape of covariates and outcome should be same") self.covariates = covariates self.treatment_arms = treatment_arms self.outcomes = outcomes self.strata = np.zeros(len(self.covariates)) return self
[docs] class AdjustedDistributionEstimator(AdjustedStratifiedDistributionEstimator): """ A class for computing distribution treatment effects using machine learning adjustment. This estimator uses cross-fitting with ML models to adjust for confounding when computing Distribution Treatment Effects (DTE), Probability Treatment Effects (PTE), and Quantile Treatment Effects (QTE). It provides more precise estimates when treatment assignment depends on observed covariates. Example: .. code-block:: python import numpy as np from sklearn.ensemble import RandomForestClassifier from dte_adj import AdjustedDistributionEstimator # Generate confounded data X = np.random.randn(1000, 5) treatment_prob = 1 / (1 + np.exp(-(X[:, 0] + X[:, 1]))) D = np.random.binomial(1, treatment_prob, 1000) Y = X.sum(axis=1) + 2 * D + np.random.randn(1000) # Fit adjusted estimator base_model = RandomForestClassifier(n_estimators=100) estimator = AdjustedDistributionEstimator(base_model, folds=3) estimator.fit(X, D, Y) # Compute adjusted treatment effects locations = np.linspace(Y.min(), Y.max(), 20) dte, lower, upper = estimator.predict_dte(1, 0, locations, variance_type="moment") """
[docs] def fit( self, covariates: np.ndarray, treatment_arms: np.ndarray, outcomes: np.ndarray ) -> "AdjustedDistributionEstimator": """ Set parameters. Args: covariates (np.ndarray): Pre-treatment covariates. treatment_arms (np.ndarray): The index of the treatment arm. outcomes (np.ndarray): Scalar-valued observed outcome. Returns: AdjustedDistributionEstimator: The fitted estimator. """ if covariates.shape[0] != treatment_arms.shape[0]: raise ValueError("The shape of covariates and treatment_arm should be same") if covariates.shape[0] != outcomes.shape[0]: raise ValueError("The shape of covariates and outcome should be same") self.covariates = covariates self.treatment_arms = treatment_arms self.outcomes = outcomes self.strata = np.zeros(len(self.covariates)) return self