Covariate Adaptive Randomization Estimators¶
This page documents estimators that work with stratified experimental designs, particularly for covariate-adaptive randomization (CAR) within strata.
These estimators are designed to handle stratified block randomization where participants are grouped into strata based on baseline covariates before treatment assignment. The key methodological contribution is leveraging additional covariates beyond strata indicators using machine learning methods to enhance the precision of distributional treatment effect estimates.
Byambadalai et al. (2025) [1] propose a flexible distribution regression framework that achieves the semiparametric efficiency bound for distributional treatment effects under CAR, demonstrating that regression-adjusted estimators can optimally utilize covariate information in stratified designs.
SimpleStratifiedDistributionEstimator¶
- class dte_adj.SimpleStratifiedDistributionEstimator[source]
Bases:
DistributionEstimatorBase
A class is for estimating the empirical distribution function and computing the Distributional parameters for CAR.
- fit(covariates: ndarray, treatment_arms: ndarray, outcomes: ndarray, strata: ndarray) DistributionEstimatorBase [source]
Train the DistributionEstimatorBase.
- Parameters:
covariates (np.ndarray) – Pre-treatment covariates.
treatment_arms (np.ndarray) – The index of the treatment arm.
outcomes (np.ndarray) – Scalar-valued observed outcome.
- Returns:
The fitted estimator.
- Return type:
DistributionEstimatorBase
- predict(treatment_arm: int, locations: ndarray) ndarray
Compute cumulative distribution values.
- Parameters:
treatment_arm (int) – The index of the treatment arm.
outcomes (np.ndarray) – Scalar values to be used for computing the cumulative distribution.
- Returns:
Estimated cumulative distribution values for the input.
- Return type:
np.ndarray
- predict_dte(target_treatment_arm: int, control_treatment_arm: int, locations: ndarray, alpha: float = 0.05, variance_type='moment', n_bootstrap=500) Tuple[ndarray, ndarray, ndarray]
Compute Distribution Treatment Effects (DTE) based on the estimator for the distribution function.
The DTE measures the difference in cumulative distribution functions between treatment groups at specified locations. It quantifies how treatment affects the probability of observing outcomes below each threshold.
- Parameters:
target_treatment_arm (int) – The index of the treatment arm of the treatment group.
control_treatment_arm (int) – The index of the treatment arm of the control group.
locations (np.ndarray) – Scalar values to be used for computing the cumulative distribution.
alpha (float, optional) – Significance level of the confidence bound. Defaults to 0.05.
variance_type (str, optional) – Variance type to be used to compute confidence intervals. Available values are “moment”, “simple”, and “uniform”. Defaults to “moment”.
n_bootstrap (int, optional) – Number of bootstrap samples. Defaults to 500.
- Returns:
- A tuple containing:
Expected DTEs (np.ndarray): Treatment effect estimates at each location
Lower bounds (np.ndarray): Lower confidence interval bounds
Upper bounds (np.ndarray): Upper confidence interval bounds
- Return type:
Tuple[np.ndarray, np.ndarray, np.ndarray]
Example
import numpy as np from dte_adj import SimpleDistributionEstimator # Generate sample data X = np.random.randn(1000, 5) D = np.random.binomial(1, 0.5, 1000) Y = X[:, 0] + 2 * D + np.random.randn(1000) # Fit estimator estimator = SimpleDistributionEstimator() estimator.fit(X, D, Y) # Compute DTE locations = np.linspace(Y.min(), Y.max(), 20) dte, lower, upper = estimator.predict_dte( target_treatment_arm=1, control_treatment_arm=0, locations=locations, variance_type="moment" ) print(f"DTE shape: {dte.shape}") # Should match locations.shape print(f"Average DTE: {dte.mean():.3f}")
- predict_pte(target_treatment_arm: int, control_treatment_arm: int, locations: ndarray, alpha: float = 0.05, variance_type='moment', n_bootstrap=500) Tuple[ndarray, ndarray, ndarray]
Compute Probability Treatment Effects (PTE) based on the estimator for the distribution function.
The PTE measures the difference in probability mass between treatment groups for intervals defined by consecutive location pairs. It quantifies how treatment affects the probability of observing outcomes within specific ranges.
- Parameters:
target_treatment_arm (int) – The index of the treatment arm of the treatment group.
control_treatment_arm (int) – The index of the treatment arm of the control group.
locations (np.ndarray) – Scalar values defining interval boundaries for probability computation. For each interval (locations[i], locations[i+1]], the PTE is computed.
alpha (float, optional) – Significance level of the confidence bound. Defaults to 0.05.
variance_type (str, optional) – Variance type to be used to compute confidence intervals. Available values are “moment”, “simple”, and “uniform”. Defaults to “moment”.
n_bootstrap (int, optional) – Number of bootstrap samples. Defaults to 500.
- Returns:
- A tuple containing:
Expected PTEs (np.ndarray): Treatment effect estimates for each interval, shape (len(locations)-1,)
Lower bounds (np.ndarray): Lower confidence interval bounds
Upper bounds (np.ndarray): Upper confidence interval bounds
- Return type:
Tuple[np.ndarray, np.ndarray, np.ndarray]
Example
import numpy as np from dte_adj import SimpleDistributionEstimator # Generate sample data X = np.random.randn(1000, 5) D = np.random.binomial(1, 0.5, 1000) Y = X[:, 0] + 2 * D + np.random.randn(1000) # Fit estimator estimator = SimpleDistributionEstimator() estimator.fit(X, D, Y) # Define interval boundaries locations = np.array([-2, -1, 0, 1, 2]) # Creates intervals: (-2,-1], (-1,0], (0,1], (1,2] # Compute PTE pte, lower, upper = estimator.predict_pte( target_treatment_arm=1, control_treatment_arm=0, locations=locations, variance_type="moment" ) print(f"PTE shape: {pte.shape}") # Should be (4,) for 4 intervals print(f"Interval effects: {pte}")
- predict_qte(target_treatment_arm: int, control_treatment_arm: int, quantiles: ndarray | None = None, alpha: float = 0.05, n_bootstrap=500) Tuple[ndarray, ndarray, ndarray]
Compute Quantile Treatment Effects (QTE) based on the estimator for the distribution function.
The QTE measures the difference in quantiles between treatment groups, providing insights into how treatment affects different parts of the outcome distribution. For stratified estimators, the computation properly accounts for strata.
- Parameters:
target_treatment_arm (int) – The index of the treatment arm of the treatment group.
control_treatment_arm (int) – The index of the treatment arm of the control group.
quantiles (np.ndarray, optional) – Quantiles used for QTE. Defaults to [0.1, 0.2, …, 0.9].
alpha (float, optional) – Significance level of the confidence bound. Defaults to 0.05.
n_bootstrap (int, optional) – Number of bootstrap samples. Defaults to 500.
- Returns:
- A tuple containing:
Expected QTEs (np.ndarray): Treatment effect estimates at each quantile
Lower bounds (np.ndarray): Lower confidence interval bounds
Upper bounds (np.ndarray): Upper confidence interval bounds
- Return type:
Tuple[np.ndarray, np.ndarray, np.ndarray]
Example
import numpy as np from dte_adj import SimpleStratifiedDistributionEstimator # Generate stratified sample data X = np.random.randn(1000, 5) strata = np.random.choice([0, 1, 2], size=1000) D = np.random.binomial(1, 0.5, 1000) Y = X[:, 0] + 2 * D + 0.5 * strata + np.random.randn(1000) # Fit stratified estimator estimator = SimpleStratifiedDistributionEstimator() estimator.fit(X, D, Y, strata) # Compute QTE at specific quantiles quantiles = np.array([0.25, 0.5, 0.75]) # 25th, 50th, 75th percentiles qte, lower, upper = estimator.predict_qte( target_treatment_arm=1, control_treatment_arm=0, quantiles=quantiles, n_bootstrap=100 ) print(f"QTE at quantiles {quantiles}: {qte}") print(f"Median effect (50th percentile): {qte[1]:.3f}")
AdjustedStratifiedDistributionEstimator¶
- class dte_adj.AdjustedStratifiedDistributionEstimator(base_model: Any, folds=3, is_multi_task=False)[source]
Bases:
DistributionEstimatorBase
A class is for estimating the adjusted distribution function and computing the Distributional parameters for CAR.
- fit(covariates: ndarray, treatment_arms: ndarray, outcomes: ndarray, strata: ndarray) DistributionEstimatorBase [source]
Train the DistributionEstimatorBase.
- Parameters:
covariates (np.ndarray) – Pre-treatment covariates.
treatment_arms (np.ndarray) – The index of the treatment arm.
outcomes (np.ndarray) – Scalar-valued observed outcome.
- Returns:
The fitted estimator.
- Return type:
DistributionEstimatorBase
- predict(treatment_arm: int, locations: ndarray) ndarray
Compute cumulative distribution values.
- Parameters:
treatment_arm (int) – The index of the treatment arm.
outcomes (np.ndarray) – Scalar values to be used for computing the cumulative distribution.
- Returns:
Estimated cumulative distribution values for the input.
- Return type:
np.ndarray
- predict_dte(target_treatment_arm: int, control_treatment_arm: int, locations: ndarray, alpha: float = 0.05, variance_type='moment', n_bootstrap=500) Tuple[ndarray, ndarray, ndarray]
Compute Distribution Treatment Effects (DTE) based on the estimator for the distribution function.
The DTE measures the difference in cumulative distribution functions between treatment groups at specified locations. It quantifies how treatment affects the probability of observing outcomes below each threshold.
- Parameters:
target_treatment_arm (int) – The index of the treatment arm of the treatment group.
control_treatment_arm (int) – The index of the treatment arm of the control group.
locations (np.ndarray) – Scalar values to be used for computing the cumulative distribution.
alpha (float, optional) – Significance level of the confidence bound. Defaults to 0.05.
variance_type (str, optional) – Variance type to be used to compute confidence intervals. Available values are “moment”, “simple”, and “uniform”. Defaults to “moment”.
n_bootstrap (int, optional) – Number of bootstrap samples. Defaults to 500.
- Returns:
- A tuple containing:
Expected DTEs (np.ndarray): Treatment effect estimates at each location
Lower bounds (np.ndarray): Lower confidence interval bounds
Upper bounds (np.ndarray): Upper confidence interval bounds
- Return type:
Tuple[np.ndarray, np.ndarray, np.ndarray]
Example
import numpy as np from dte_adj import SimpleDistributionEstimator # Generate sample data X = np.random.randn(1000, 5) D = np.random.binomial(1, 0.5, 1000) Y = X[:, 0] + 2 * D + np.random.randn(1000) # Fit estimator estimator = SimpleDistributionEstimator() estimator.fit(X, D, Y) # Compute DTE locations = np.linspace(Y.min(), Y.max(), 20) dte, lower, upper = estimator.predict_dte( target_treatment_arm=1, control_treatment_arm=0, locations=locations, variance_type="moment" ) print(f"DTE shape: {dte.shape}") # Should match locations.shape print(f"Average DTE: {dte.mean():.3f}")
- predict_pte(target_treatment_arm: int, control_treatment_arm: int, locations: ndarray, alpha: float = 0.05, variance_type='moment', n_bootstrap=500) Tuple[ndarray, ndarray, ndarray]
Compute Probability Treatment Effects (PTE) based on the estimator for the distribution function.
The PTE measures the difference in probability mass between treatment groups for intervals defined by consecutive location pairs. It quantifies how treatment affects the probability of observing outcomes within specific ranges.
- Parameters:
target_treatment_arm (int) – The index of the treatment arm of the treatment group.
control_treatment_arm (int) – The index of the treatment arm of the control group.
locations (np.ndarray) – Scalar values defining interval boundaries for probability computation. For each interval (locations[i], locations[i+1]], the PTE is computed.
alpha (float, optional) – Significance level of the confidence bound. Defaults to 0.05.
variance_type (str, optional) – Variance type to be used to compute confidence intervals. Available values are “moment”, “simple”, and “uniform”. Defaults to “moment”.
n_bootstrap (int, optional) – Number of bootstrap samples. Defaults to 500.
- Returns:
- A tuple containing:
Expected PTEs (np.ndarray): Treatment effect estimates for each interval, shape (len(locations)-1,)
Lower bounds (np.ndarray): Lower confidence interval bounds
Upper bounds (np.ndarray): Upper confidence interval bounds
- Return type:
Tuple[np.ndarray, np.ndarray, np.ndarray]
Example
import numpy as np from dte_adj import SimpleDistributionEstimator # Generate sample data X = np.random.randn(1000, 5) D = np.random.binomial(1, 0.5, 1000) Y = X[:, 0] + 2 * D + np.random.randn(1000) # Fit estimator estimator = SimpleDistributionEstimator() estimator.fit(X, D, Y) # Define interval boundaries locations = np.array([-2, -1, 0, 1, 2]) # Creates intervals: (-2,-1], (-1,0], (0,1], (1,2] # Compute PTE pte, lower, upper = estimator.predict_pte( target_treatment_arm=1, control_treatment_arm=0, locations=locations, variance_type="moment" ) print(f"PTE shape: {pte.shape}") # Should be (4,) for 4 intervals print(f"Interval effects: {pte}")
- predict_qte(target_treatment_arm: int, control_treatment_arm: int, quantiles: ndarray | None = None, alpha: float = 0.05, n_bootstrap=500) Tuple[ndarray, ndarray, ndarray]
Compute Quantile Treatment Effects (QTE) based on the estimator for the distribution function.
The QTE measures the difference in quantiles between treatment groups, providing insights into how treatment affects different parts of the outcome distribution. For stratified estimators, the computation properly accounts for strata.
- Parameters:
target_treatment_arm (int) – The index of the treatment arm of the treatment group.
control_treatment_arm (int) – The index of the treatment arm of the control group.
quantiles (np.ndarray, optional) – Quantiles used for QTE. Defaults to [0.1, 0.2, …, 0.9].
alpha (float, optional) – Significance level of the confidence bound. Defaults to 0.05.
n_bootstrap (int, optional) – Number of bootstrap samples. Defaults to 500.
- Returns:
- A tuple containing:
Expected QTEs (np.ndarray): Treatment effect estimates at each quantile
Lower bounds (np.ndarray): Lower confidence interval bounds
Upper bounds (np.ndarray): Upper confidence interval bounds
- Return type:
Tuple[np.ndarray, np.ndarray, np.ndarray]
Example
import numpy as np from dte_adj import SimpleStratifiedDistributionEstimator # Generate stratified sample data X = np.random.randn(1000, 5) strata = np.random.choice([0, 1, 2], size=1000) D = np.random.binomial(1, 0.5, 1000) Y = X[:, 0] + 2 * D + 0.5 * strata + np.random.randn(1000) # Fit stratified estimator estimator = SimpleStratifiedDistributionEstimator() estimator.fit(X, D, Y, strata) # Compute QTE at specific quantiles quantiles = np.array([0.25, 0.5, 0.75]) # 25th, 50th, 75th percentiles qte, lower, upper = estimator.predict_qte( target_treatment_arm=1, control_treatment_arm=0, quantiles=quantiles, n_bootstrap=100 ) print(f"QTE at quantiles {quantiles}: {qte}") print(f"Median effect (50th percentile): {qte[1]:.3f}")